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Abstract. We consider the free-fermion model on the square lattice and obtain the local 
three-spin correlation function for three spins surrounding a unit cell of the lattice. As an 
application of this result, we compute the spontaneous magnetisation for the Ising model 
on the Union Jack lattice with the most general anisotropic interactions. 

1. Introduction 

The two-dimensional free-fermion model on the square lattice (Fan and Wu 1970) is 
a lattice model solvable by the method of Pfaffians. It can also be regarded as an 
interaction-around-the-face model for which the local Boltzmann factors satisfy a 
constraint, known as the free-fermion condition. Indeed, in the latter representation, 
one can treat the model as a spin system and inquire about the exact expressions of 
its correlation functions. Recently, Baxter (1986) obtained explicit expressions for the 
local one- and two-spin correlations of the free-fermion model. In this paper we show 
that the consideration can be extended to local three-spin correlations, and we obtain 
explicit expressions for the correlation of three spins located around a unit cell of the 
square lattice. As an application of our result, we compute the spontaneous magnetisa- 
tion of the Union Jack Ising lattice with complete anisotropic interactionst. 

The strategy of our analysis is to convert the free-fermion model into a checkerboard 
model which possesses the same three-spin correlation functions in question as the 
free-fermion model. Then, making use of the known spontaneous magnetisations of 
the checkerboard model obtained recently by us (Lin and Wu 1988) and the generalisa- 
tion of a correlation identity used by Choy and Baxter (1987), we derive explicit 
expression for the three-spin correlations. The calculation is further facilitated by the 
introduction of an intermediate step of a Union Jack lattice, which provides an 
indispensible alternate formulation. 

The organisation of this paper is as follows. In § 2 we review the definition of the 
free-fermion model and define the problem at hand. In § 3 we convert the free-fermion 
model, first to a Union Jack Ising model, then to a checkerboard Ising lattice. Calcula- 
tions of the three-spin correlation functions are carried out in 0 4 using the resulting 
checkerboard formulation, and in § 5 we apply the result of § 4 to deduce the spon- 
taneous magnetisation of the general anisotropic Union Jack Ising lattice. 

* A  preliminary version of this work has been reported by one of us (KYL) at the 5th Republic of 
China-Republic of Korea symposium on Solid State Physics at Seoul, July 12-14, 1988. 
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2. Definitions 

Consider an eight-vertex model with vertex configurations and weights shown in figure 
1. Place Ising spins in the faces of the lattice and require two neighbouring spins to 
be opposite if, and only if, they are separated by a bond. Then, there exists a two-to-one 
mapping between the Ising spin configurations and the vertex configurations of the 
free-fermion model, and we can equally well describe the vertex weights by specifying 
the spins surrounding each lattice site. 

Let a, b, c, d be the four spins surrounding a lattice site in the arrangement shown 
in figure 1. Then the eight vertex weights w ( a ,  b, c, d )  = w(-a,  -b, -c, - d )  are 

w1 = U ( + + + + )  w2= w ( + - + - )  

U3 = CO(+--+)  0 4  = U ( + + - - )  

wg = U ( + - + + )  wg= U(+++-) 

w7 = U(++-+)  wg = w (  -+++) 

and are all positive. The free-fermion model is the eight-vertex model whose vertex 
weights satisfy the free-fermion constraint 

w l w z  + w3w4 = w5wg + w7wg. (2) 

In any spin configuration vertices of types ( 5 ) ,  ( 6 )  and (7), ( 8 )  always occur in 
pairs. As a consequence, the weights w 5 ,  wg, w 7 ,  wg  occur only in the combination of 
wgwg and w 7 w g ,  and there is no loss of generality if we replace w g  and 6 4  by U, and 
w7 and w g  by w',  where 

As a result, the vertex weights (1) do not differentiate the upper right from the lower 
left (and upper left from lower right) directions. Particularly, there are only two 
independent three-spin correlation functions among the four spins a, b, c, d, namely 

M I  = (bcd)  = (dab)  

M2 = (abc) = (cda)  

where 

Z X II w ( a ,  b, c, d )  
E II w ( a ,  b, c, d )  

( X )  3 ' 

(4) 

In ( 5 ) ,  the summations are taken over all vertex, or spin, configurations and the products 
over all vertex sites. Our goal is to compute both M ,  and M2 in terms of the vertex 
weights (1) and (3). 

1 2 3 4 5 6 7 8 

Figure 1. The eight vertex configurations and weights of the eight-vertex model. 
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3. Equivalence to a checkerboard lattice 

It is convenient to rotate the lattice 45" in the clockwise direction so that the four spins 
a, b, c, d of figure 1 are arranged as shown in figure 2. We now convert the free-fermion 
model into a checkerboard Ising model, shown in figure 3, via the intermediate step 
of a Union Jack lattice of figure 2 t .  An important fact is that these transformations 
leave the three-spin correlations M ,  and M2 unchanged and, consequently, we can 
choose a convenient representation to carry out the calculation. 

d 

Figure 2. The Union Jack lattice. 

Figure 3. The checkerboard lattice. 

t It is also possible to go directly from the free-fermion model to the checkerboard Ising model, but the 
use of the intervening Union Jack lattice makes the presentation clearer. 



1124 K Y L i n a n d F Y W u  

Our first step is to convert the free-fermion model into the Union Jack model of 
figure 2. This is done by writing 

w ( a ,  b, c, d )  = 2 p  exp[iL(ab+ cd)+iL'(ad + bc)] cosh[L,(a+ c ) +  L 2 ( b + d ) ]  ( 6 )  
which becomes, upon using (1) and (3) ,  

w 1  = 2p eL+L' cosh 2( L1 + L,) 

cosh 2( L1- L2) w2 = 2p e-(L+L')  

w4=2p eL-L' 

w = 2p cosh 2L1 

w 3  = 2p e-L+L' 
(7) 

w'=2p cosh 2L2. 

Only five of the six vertex weights in (7) are independent as they are related through 
the free-fermion condition (2). We can solve (7 )  for L, ,  L2, L, L' (and p ) ,  obtaining 

cosh 2L, = w / G  ( s a )  

cosh 2L2 = w ' / G  ( 8 b )  
e-2L - 

e-2L'= [ o 0 ~ i J ( w , w ~ - w ~ ) ( w , w , - w ~ ~ ) 1 / w ~ w ~ .  (8d)  

( 8 ~ )  - [ W O  xk J( wlw* - CO2)( w1 w, - W '2)]/ w1w4 

We note that ( 8 a )  and (8b) determine L1, L2 up to an arbitrary sign. For the sake of 
easier visualisation, we explicitly consider 

w 3 w 4 < { w 2 ,  U'*}  or w,w,> { U 2 ,  WIZ} (9) 
so that both L1 and L2 are real. Our final results, however, are independent of this 
restriction. The upper signs in (8c) and (8d) now correspond to L1, L2 having the 
same sign, e.g. L, > 0, L2 > 0, and the lower signs correspond to the negation of, say, 
L2, i.e. L1 > O ,  L,<O. Thus, (8) offers two distinct realisations of the free-fermion 
model as a spin model, a fact we shall explicitly use in later considerations. 

We next introduce a local star-star transformation which transforms the Union 
Jack lattice into the checkerboard lattice of figure 3. The star-star transformation, 
shown in figure 4, applies to a unit cell of the Union Jack lattice with the L' interactions 

a \  L, I L ,  

b b 

Figure 4. The star-star transformation converting the Union Jack lattice of figure 2 into 
the checkerboard lattice of figure 3. 
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deleted and thus having the Boltzmann weight 

W(a, b, c, d )=exp[- i l ' ( ad  + bc)]w(a, b, c, d )  

=2p'exp[iP(cd - a b ) ]  cosh(Rla+R2b+R3c+R4d).  (10) 

Defining Wi in terms of W(a, b, c, d)  in the same way as wi is defined in (1) and (3), 
we can explicitly rewrite (10) as 

W, = e-L'wl = 2p eL cosh 2( L, + L2) = 2p' cosh( R, + R2 + R3 + R4) 

W, = e w2 = 2p e-L cosh 2( L, - L2) = 2p' cosh( RI - R 2 S  R3 - R4) L' 

w 3-e  - -L' 0 ~ = 2 p e - ~  = 2p' cosh( RI - R2 - R3 + R4) 

= 2p' cosh( RI + R2- R3 - R4) L w 4 = e  w4 = 2 p e L  

W = w  = 2p cosh 2L1 = 2p' e' cosh( R, - R2 + R3 + R4) 

= 2p' e-' cosh( R, + R2 + R3 - R4) 

= 2p' e-' cosh( R, + R2 - R, + R4) 

=2p ' eP  cosh(-Rl+R2+R3+R4).  

W'= U' = 2p cosh 2L1 

Note that the W weights satisfy the free-fermion condition 

w,w2+ w3w4= w2+ Wt2 

and the further constraint 

WlW3+ W2W4=2WW' 

indicating that only four of the six weights are independent. As a consequence, the 
four interactions Ri are related, and their relationship is 

sinh 2R1 sinh 2R4 = sinh 2R2 sinh 2R3. (14) 

The next step is to solve (11) for R, (and P ) .  However, (11) is identical to (2.5) 
of Baxter (1986) (with M = O  therein) for which Baxter has already obtained the 
solution. For completeness, we give here this solution in our notation 

c o s h 2 P = (  W, W4+ W 2 W 3 ) / 2 w W ' = ( ~ , ~ 4 + ~ 2 ~ 3 ) / 2 w w '  

cosh 2Ri = (s2+ S: - ~f - s ; ) /~(ss~  -s jsi j )  

sinh2Ri/sinh2Rj=(ssj-sisij)/(ssi-sjsij) 

with 
L' s = W, = 

si4 = ~ 2 3  = W, = e-Lw3 

si3 = ~ 2 4  = W2 = e w2 
s12= s34= W4=e L w4 

(16) 
st = e-'W'= e-'w' s2 = eWPW= e-'w 

P P s, = ePW' = ePw' s 4 = e  W = e  0. 

These relations completely determine Ri up to an overall sign in terms of the W weights 
and, after introducing (8d)  for e-2L', in terms of the free-fermion weights. 
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,4 .  Computation of the three-spin correlations MI and M2 

The transformation of the free-fermion model to the Union Jack and checkerboard 
lattices leaves the eight-coordinated spins a, b, c, d unchanged and, consequently, 
does not alter the three-spin correlations M ,  and M 2 .  It is then convenient to compute 
MI and M2 using whichever representation that is convenient. We now proceed with 
the checkerboard lattice. 

The computation is based on the use of the following identity, which is a generalisa- 
tion of that used by Choy and Baxter (1987) to anisotropic interactions 

(a )  = (tanh( R1 a + R2 b + R3 c + R4d)) (17) 
where ( ) is defined in ( 5 ) ,  and a is the spin connecting to a, b, c and d as shown in 
figures 3 and 4. Note that (a )  changes sign if the signs of all Ri are reversed, so we 
can always choose a solution of (15) to make (a) positive. After expanding tanh(R,a + 
R2b + R3c + R4d) into a linear combination of a, b, c, d, abc, bcd, cda, dab, we find 

( a )  = AT234(a) +Al341(b) +A;412(C) +A&23(d) 

+ A1234(bcd) + A2341(cda) + A3412(dab) + Ai123(abc) (18) 
where 
A& = i(Gijkr * HLjkl) 

Gjjkl= tanh( Ri + Rj + Rk + R,) + tanh( Ri + Rj - Rk - R,) 

+tanh(Ri - Rj - R k +  Rl)+tanh(Ri - Rj+ Rk - R,) 

Hijjki = tanh( Ri - Rj - Rk - R,) + tanh( Ri - Rj + Rk + RI) 

+tanh(Ri + Rj - Rk + Rl)+tanh(Ri + Rj + Rk - R,). 

For an infinite lattice we have 

( a )  = (b) = (c) = (d) = I (20) 
where I is the spontaneous magnetisation of the free-fermion model, an explicit 
expression of which has been given by Baxter (1986): 

where s = ; (U,  + w2 + w3 + w4); I is zero whenever the quantity inside the large bracket 
in (21) is negative, namely, when the system is in the disordered regime. Substituting 
(19) and (20) into (18) and after some rearrangement of terms, we obtain 

( a ) / I = t a n h ( R 1 + R 2 + R 3 + R , ) -  T1234(R)Z1- T2341(R)Z2 (22) 
where 

zi = Mi/  I - 1 i = l , 2  

T1234(R) =sinh2R2 sinh2R4sinh2(Rl+R,) /G+(R)G-(R) (23) 
G,( R )  = cosh 2( RI + R3) + cosh 2( R2* R4). 

Equation (22) is the basic relation from which MI and M2 are to be computed. As it 
stands, however, (22) contains three unknown quantities, zl, z2 and (a).  We now show 
that (a )  can be computed. 
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The lattice shown in figure 3 is a checkerboard lattice for which the one-spin 
correlation functions are known (Lin and Wu 1988). Specialising the result of Lin and 
Wu (1988) to figure 3, we obtain after some algebra the expression 

where 

2 = B ,  + B- + 2=+ 4( 1 - e-4L’) 

B,=[cosh2(Rl+R4)*1][cosh2(R2+R3)i l ]  

- e - 4 ~ [ ~ o s h 2 ( R 1 - R 4 ) f l ] [ ~ ~ ~ h  2(R2-R3)T1]. (25) 

It is now straightforward to substitute (24) into (22), using R, = Ri({o}, L’) given by 
(15 ) ,  where L‘ is given in terms of the w by ( 8 d ) .  Then, (22) becomes an equation 
containing only w l ,  w 2 ,  w 3 ,  w 4 ,  w, w ‘  and the two unknowns z1 and z 2 .  

Now, ( 8 d )  gives L‘ in terms of the w in two different ways, corresponding to L1 > 0 
and L2 (of the Union Jack lattice) being either positive or negative, as remarked in 
discussions following (9). Thus, (22) generates two equations by using ( 8 d )  with the 
upper and lower signs, respectively. After a very lengthy yet straightforward calculation, 
these two equations become 

F, = A, - Bl (9- 1)  i B, (y - 1)  

where 
2 12 w - w  

F+F-=- 
A + 2 a  

F*= ( D + 2 E 0 )  w1w2 

A, = tanh 2(L1 f lL21) 

1 
w1w2 

=- ( w J 0 1 0 2 - w 1 2 * w w ) J w 1 w 2 - w 2 )  

B1 = a[ -tanh 2(L1 + L2) - tanh 2(L1 - L2) + 2 tanh 2Ll] 
2 

W ] W 2  - w Jw1wz-w)2 -- - 
2ww1w2 

B2 = :[ -tanh 2( L1 + L2) + tanh 2( L1 - L2) + 2 tanh 2Ll] 
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Finally, solving (26) for MI and M2, we obtain 

w l w 2 + w 2  F++ F- 
M1= I 

Equation (29), in which I is given by (21), gives the desired expressions for the 
three-spin correlations. Note that MI and M 2  can be obtained from each other by an 
interchange of w and w t .  Note that, as remarked earlier, these results are valid for all 
w, independent of the validity of (9). 

In the special case of w 2 =  w t 2  = (WlW2+W3W4)/2, (29) reduces to 

5. Spontaneous magnetisation of the anisotropic Union Jack Ising lattice 

As an application of the result obtained in § 4 ,  we now compute the spontaneous 
magnetisation of the Union Jack Ising lattice with general anisotropic interactions. 

The most general anisotropic Union Jack lattice, shown in figure 5 ,  possesses six 
distinct interactions J1, J 2 ,  J3, J4, J, J’. In the limit of an infinite lattice, the spontaneous 
magnetisation of the lattice is 

(31) 

where ( a )  and (7) are, respectively, the per-site magnetisations of the two sublattices 
of eight-coordinated and four-coordinated sites. The evaluation of ( a )  for the general 
lattice is relatively simple and an expression for ( a )  has been given by Wu and Lin 
(1987) (see also discussions below). In fact, as early as two decades ago Vaks et a1 
(1966) obtained the free energy and the sublattice magnetisation ( a )  for the symmetric 

MO = %(a)  + ( 7 ) )  

d 

Figure 5. The Union Jack lattice with the most general anisotropic interactions. 
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case of Ji = J , ,  J = J ' ;  they also showed that the system exhibits a re-entry transition, 
a phenomenon which has since been shown to persist for J1 = J2 = J3 # J4,  J = J' (Sacco 
and Wu 1975). Interest in the Union Jack Ising system was revived recently when Lin 
and Wang (1987) published a conjectured form of the sublattice magnetisation ( T )  in 
the symmetric case. Their conjecture has since been proven to hold by Choy and 
Baxter (1987), and Lin and Wang (1988) further extended Choy and Baxter's derivation 
of (7) to the case of J, = J1, J # J ' .  We now complete the task by computing ( T )  for 
the most general anisotropic Union Jack lattice. 

Our calculation of ( T )  is based on the use of the following identity, derived in 
analogy to (22) for the Union Jack lattice: 

where Ki = J , /kT ,  z, = M , / ( a )  - 1, i = 1,2, and M1 = (bcd) ,  M2 = (abc)  for the Union 
Jack lattice. Now, after tracing over the four-coordinated sites, the Union Jack lattice 
becomes a free-fermion model (Wu and Lin 1987) with vertex weights 

w1 = 2 e K + K '  cosh(Kl + K2+ K,+ K4) 

w2 = 2 e-K-K' cosh( K1 - K2+ K3 - K4) 

w4 = 2 eK-K'  cosh( K1 + K2- K3 - K4) 
w3 = 2 e-K+K'  Cosh( Kl-  K2 - K3 + K4) 

w5 = 2 C O S ~ ( K ,  - K2+ K3+ K4) 

06 = 2 cosh( K1 + K2 + K3 - K4) 
07 = 2 cosh( K1 + K2 - K3 + K4) 

w ~ = ~ c o s ~ ( - K ~ + K ~ + K ~ + K ~ ) .  

(33) 

Using this equivalence Wu and Lin (1987) obtained the sublattice magnetisation 

( a ) =  I (34) 
where I is given by (21) with the w given by (3) and (33). Now the tracing of the 
four-coordinated sites does not affect the three-spin correlations. Hence MI, M 2 ,  and 
z, , z2, of the Union Jack lattice are precisely those of the free-fermion model computed 
in the preceding section, provided that we use the w weights (33). Solving (26) for 
z1 = Ml/ I - 1 and z2 = M2/ I - 1 and substituting this solution into (32), we obtain after 
some reduction the final expression for the sublattice spontaneous magnetisation 

( T )  I [A1234(K ) (F++ F-)+A2341(K - F-)l 
(35) 

A1234(K) = sinh 2(K1+ K3) /J2G-(K)  sinh 2K1 sinh 2K3 
with F, given by (27), G-(K)  given by (23), and w weights given by (3) and (33). 
This is the desired expression. 

6. Summary and discussions 

We have evaluated the three-spin correlation function for three Ising spins surrounding 
a unit cell in the free-fermion model. The results are given by (4) and (29). We have 
also obtained the spontaneous magnetisation of the Ising model on the Union Jack 
lattice with the most general anisotropic interactions, and the result is given by (35). 
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After the completion of this work we received a preprint from Professor Baxter 
and Dr Choy (Baxter and Choy 1989) in which they computed several local three-spin 
correlation functions, including MI and M 2 ,  using a different route of transformations. 
We have verified that their results for MI and M2 are identical with ours. Indeed, 
their SI is identically our MI, and the identity can be seen by using the relation 

F,+F-=-( 2wF w2-w3w4 ) 
W l W 2  

Q = G + 2 w ” D V E  

where C is defined in (28) and D, G, F, V are those defined in (4.1) of Baxter and 
Choy (1988). It can also be shown that, using notation defined by (4.2) of Baxter and 
Choy (1988), the sublattice magnetisation (a )  is given by the compact expression, 
which agrees with (35) upon using the w weights (33), 

sinh 2(J2+J4)F* 
@ (a)=- + (37) 

where F* is F (and Q* is Q) with w and w’ interchanged. 
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